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Chapter 1.  Introduction

1.1 Purpose of technical documentation

The Electronic Field Book Processor (EFBP) uses a wide variety of mathematical
techniques in surveying and statistics.  Every user does not need to fully
understand the theoretical basis for these techniques.
Understanding what the report files indicate are more important.  Most users can
simply refer to the EFBP user's guide for most questions that deal with
production issues.  A user unfamiliar with EFBP would need to read the EFBP
user's guide before taking advantage of the information in this document.

There are times when a user wants to look at some broader background descriptive
information on certain algorithms in EFBP.  This document serves that purpose,
and points the to more source documents of information as this is not intended
to eliminate those references.

In addition, many users are asked technical questions by others go beyond their
knowledge base.  Those questions can now be forwarded to this document.

This document should be used in conjunction with the EFBP User's Guide and
information realted to your particular data collector system.  A user not
familiar with EFBP would need to refer to the EFBP user's guide before utilizing
information in this document.  The Electronic Field Book (EFB) was developed for
field survey collection by the Florida Department of Transportation, and the
subsequent processing of it by EFBP.  While EFB relies exclusively on EFBP for
coordinate production,  EFBP accepts other field system's survey measurements if
the data is translated to the ascii raw data file format (.obs) which is read by
EFBP.   The .obs file and its format must be understood (see EFBP user's guide)
before understanding this documentation as many references are made to its
contents.

1.2 Discussion of components of the documentation

Chapter 2 deals with correction of systematic errors in surveying measurements.
 Chapter 3 discusses analysis of repetitive survey measurements.  Chapter 4
discusses how  a weighted average can be used to derive a realistic "average"
from repeated observations for the same measurement which have different error
estimates.  Chapter 5 discusses correction of systematic errors due to earth
curvature and atmospheric refraction.

Chapter 6 and 7 discuss horizontal and vertical datums respectively.

Chapter 8 highlights state plane coordinate computations as they relate to EFBP
and use of its generated coordinates in other software systems.  

Chapter 9 discusses the automatic sideshot identification algorithms in EFBP.

Chapter 10 discusses the importance of error estimation in least squares
analysis as it relates EFBP.  Reasonable strategies which enable integration of
various measurement types is presented.
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Chapter 11 discusses how one validates the quality of survey measurements based
on the least squares analysis output.  Chapter 12 discusses the interpretation
of least squares post-adjustment error estimates of final coordinates.  Chapter
13 presents the basic theory of least squares analysis, its application to non-
linear equations (most survey measurements are of this form), efficient
strategies for solution, and generation of post-adjustment coordinate error
estimates.

Chapter 14 is a glossary of EFBP terminology, and this is followed by references
which further document the mathematical foundations of EFBP.



3

3

Chapter 2. Instrument calibration

All survey field instruments can contain systematic errors due to the  nature of
the mechanical components in them.  Personal and environmental systematic errors
can also exist.  These errors can be minimized through proper field techniques
and office processing mechanisms.  Instrumental systematic errors can be
minimized if a calibration process is performed,
and mechanical or mathematical means are used to correct any systematic error
that is detected.  EFBP uses mathematical means to correct systematic error in
ways that are now discussed.

2.1 Systematic vs. random error

Error can be systematic or random.  Systematic error follows some mathematical
rules which can be modelled and corrected by proper techniques or survey data
processing.  Random error follows the laws of probability which are evaluated
using statistical processes such as least squares analysis.  Sources of error in
surveying are instrumental, personal, or environmental.

Instrumental systematic errors in surveying can include total station/theodolite
horizontal and vertical collimation errors, electronic distance/prism combined
offset and scale errors, a differential level's  line of sight not being
horizontal, and a tape containing offset (short or long) or scale errors. 
Instrumental random errors are due to the mechanical nature of survey
instruments being limited in absolute measuring ability.

An example of a personal systematic errors is not applying the correct pull to a
tape.  A good example of random personal error is our inability to point
perfectly with a total station or theodolite.

Environmental systematic errors include earth curvature and atmospheric
refraction.  Heat waves, making pointing difficult, are an example of an
environmental random error.

The distinction between systematic error and random error can become difficult
in some cases.  An electronic distance measuring (EDM) device is affected by
temperature and pressure.  At an instance of time there is a temperature and
pressure that can be used to model systematic error corrections.  You obviously
would not record temperature and pressure every time you make a measurement, so
it is difficult to define the drift in temperature and pressure as totally
systematic or random.

2.2 Total station/theodolite

If the vertical circle of a theodolite was in perfect adjustment, zero degrees
would be at the zenith.  A horizontal circle would be in perfect adjustment
(except for graduation errors in a theodolite) if the direct and reverse circle
readings when pointing, with no personal error, to the same object would differ
by exactly 180 degrees.  Both of these errors are minimized by measuring equal
number of times in direct and reverse position and averaging.
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Many situations, such as topographic data collection, do not justify repeated
measurements in direct and reverse.  It is still highly desirable to eliminate
instrument systematic error in all measurements.  This is why EFBP is able to
process what are called numerical calibration records.

A theodolite/total station calibration is an equal number of direct and reverse
readings to the same object.  Obviously the object should be very well defined
so precise pointings can be made.  While 1 direct and 1 reverse reading will
suffice, multiple pointings are recommended so the surveyor can ensure no
blunders exist, obtain a more reliable measurement through averaging, and obtain
an estimate of the operator's pointing error.

EFBP averages the direct readings and computes standard deviations in a single
observation for horizontal and vertical pointings.  The same is performed in the
reverse position.  The standard deviations indicate if a blunder exists, and in
absence of a blunder indicate pointing ability.

If the instrument was in perfect vertical adjustment, the sum of the average
direct and reverse vertical circles would be 360 degrees.  The difference from
360 degrees represents twice the error.  As an example, assume the average
direct and reverse vertical pointings were 90-00-30 and 270-00-20.  The sum is
360-00-50, and indicates every zenith circle reading should have 25 seconds
subtracted from it.  A sum less than 360 degrees would require an addition of
the error value to all zenith circle readings.

The amount that the average direct and reverse horizontal circles are from being
180 degrees different again is twice the error.  In this case the sign of the
correction will be opposite as applied to horizontal angles measured in the
direct and reverse positions.  As an example consider the average direct and
reverse horizontal circle pointings in a calibration to be 190-00-10 and 10-00-
30 respectively.  Horizontal angles measured in direct would have +10 seconds
added to them, while the correction added to reverse horizontal angles would be
-10 seconds.

Calibration values are applied to all measurements after it until another
calibration that contains numerical data is reached (a user can store a
calibration without circle readings using EFB as it contains other pertinent
information).  If no calibration exists at the beginning of an .obs file the
calibration corrections are zero until a calibration with numerical data is
reached.  If two or more distinct calibrations are in consecutive order in an
.obs file, the last is always used.

Due to the calibration process, EFBP treats direct and reverse readings as
unique measurements because they can be corrected for the systematic errors
which were the major reason for measuring in direct and reverse.  Thus four
direct and four reverse measurements are corrected for systematic calibration
errors, summed, and divided by eight to obtain an average.  Many methods used to
recommend averaging direct and reverse measurements in obtaining 4 values which
are then averaged.  This is no longer necessary due to the calibration record.
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2.3 Differential level

A differential level is calibrated for line of sight not being horizontal
usually by a peg test.  This test is described in all basic surveying texts, and
usually involves one backsight/foresight combination at midpoint (this corrects
systematic error) to a backsight/foresight combination where the sight distances
are not equal. 

EFBP performs no systematic correction based on a peg test calibration in an
.obs file as it is assumed the surveyor adjusted the cross hairs as a result of
the test to create the horizontal line of sight.

2.4 Electronic distance measurement (FIXIT)

An EDM/prism combination can contain offset (constant) and scale (parts per
million - ppm) systematic errors.  The offset error remains constant for any
measured length of line.  The scale error grows (or shrinks) as a linear
function of the length of the line.

An EDM/prism combination can be tested for correct distance measurement by one
of three methods:

(1) Lay out a precisely measured distance with a steel tape and compare that
value to what you measure with the EDM.  This will not resolve scale error as a
precisely taped distance has to be short in length.

(2) Set two collinear points A, B, and C.  Measured distances AB plus BC should
equal measured distance AC.  The difference is the error in the EDM for those
given line lengths.  Since this test usually uses short lines the scale error is
usually not measurable.

(3) An EDM calibration range is utilized which has a series of known distances
which vary in length.  The shortest distance determines the offset error, and
the scale error is modelled by how the difference between the known and measured
distance values vary for different lengths of lines.
Public domain programs are available for computation of base line measurements.

Some total stations or EDM's allow a user to dial in corrections for offset and
scale error so that the distances in a data file (.obs) will be already
corrected for any systematic error influence.  If this is not performed, an
auxiliary program to EFBP called FIXIT allows you to apply offset and scale
corrections to measured EDM distances before you actually process your data with
EFBP.  FIXIT has allowed an accidental prism offset or incorrect
temperature/pressure problem to be efficiently corrected.

2.5 Tape (FIXIT)

A tape is like an EDM and is suspect to offset and scale errors.  A tape is
usually laid out on a known baseline to obtain this information.  Taping is
usually a small part of an .obs file.  With a text editor one should separate
total station and taping measurements before performing FIXIT type corrections.
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 The text editor can then be used to again merge the total station and taping
measurements into one .obs file again.
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Chapter 3.  Repetition error, maximum spread, same line/different setup
comparison

Repeated measurements provide the surveyor with checks for blunders and a way of
estimating the quality of one's measurements.  Certain types of repeated
measurements are more generic in testing for blunders.  As an example, repeated
measurements from the same instrument setup does not check if a user set up the
total station or prisms over the station(s) properly.  Another setup at that
station, or a setup which measures a common line but in the opposite direction,
is a better check as the quality of the instrument setups can be made.

3.1 Simple averaging, standard error in a single observation, and standard error
in the mean

These values can be derived from repeated measurements at the same instrument
setup.  Note standard error and standard deviation are used interchangeably in
this discussion.

Slope distances, zenith angles, height of instruments, and height of targets are
converted to horizontal distance and mark-to-mark elevation change before any
averaging or standard error computation begins.  This is especially required for
elevation differences in case a change in height of target occurred during the
repetition process.

Horizontal circle readings are converted to horizontal angles based on a unique
backsight station before averaging and standard error computations begin.  This
allows any movement in the horizontal circle plate to be accounted for between
repetitions.  This is analogous to the process of "moving" an initial horizontal
circle reading when turning a series of repetitions.  The difference between
horizontal circle readings (horizontal angle) provides a more generic comparison
mechanism.

The backsight station for a particular setup is the station which was sighted
the most times.  If a given number of stations were sighted the same number of
times, the first station of that group after the setup record is selected as the
backsight.  The .obs file is usually time sequenced, and thus the backsight is
commonly measured to first at a setup.

The EFBP users guide has a series of examples of averaging and standard error
computations, and thus one can refer to these examples if one needs to look at
numerical examples.

3.1.1  Simple averaging

A simple average is performed for any repeated measurements at a setup.
A simple average is the sum of the individual measurements divided by the number
of repetitions.  It does not take into account that the individual measurements
could vary in quality.  A weighted average, which is used by EFBP in some other
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situations and is discussed later, can take into account measurements of varying
quality.

One point to make is that the .obs file allows for multiple pointings to exist
on the same position number and in the same (direct/reverse) face.
This is common when one has performed a large number of topographic
measurements, and one wishes to "check in" on the backsight at the end of the
setup.  Some surveyors like to routinely check in on the backsight in some pre-
defined chronological fashion.  Slope distances/zenith angles of this fashion
are treated as separate measurements.  Thus 1 measurement in position 1 direct,
1 measurement in position 1 reverse, 3 measurements in position 2 direct, and 1
measurement in position 2 reverse of slope distance/zenith angle will be treated
as 6 measurements. 

The same is not true for horizontal circle readings as the 3 measurements in
position 2 direct will be averaged.  At this point a unique horizontal circle
reading exists in position 1 direct, position 1 reverse, position 2 direct, and
position 2 reverse.  These four values are used in computing horizontal angles
from horizontal circles, and the horizontal angles are then averaged.  Thus one
unique horizontal circle reading exists for each position number and face
(direct/reverse) prior to the horizontal angle computation/averaging process. 
This eliminates the problem of how many horizontal angles exist from station A1
to A2 in position 1 reverse if station A1 was measured to 4 times and A2 once. 
By EFBP's algorithm the four circle readings to A1 are averaged and one angle
for that position number and face is computed.

The averaging of horizontal circle readings on the same position/face produces
the multiple pointing error value in the abstracting (.gen) report.

Reiterating, slope distances and zenith angles are not averaged, instead their
reduced horizontal distances and elevation differences are averaged.
It is possible to average a horizontal distance(s) in .obs with those in .obs
that are derived from slope distance/zenith angles.  Horizontal circle readings
on the same position and face are averaged before horizontal angle computation
occurs.  Each position/face produces a horizontal angle which is subjected to
the averaging process.

The simple averaging process is thus a fairly simple computation which is well
documented in statistics texts and surveying textbook sections on statistics as
it applies to surveying.

3.1.2  Standard error in a single observation

The standard error is the square root of the variance.  To compute a standard
error one must first compute the difference between each individual observation
and the average.  These are residuals in a averaging process.  The residuals are
squared and summed.  That sum is divided by the
number of observations minus one to obtain the variance.  The square root of
this variance is the standard error in a single observation.
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Residuals are squared because they will be both positive and negative in sign -
a simple sum of residuals from a simple average yields zero.  The division by
the number of observations minus one is similar to dividing by the number of
observations in simple averaging.  The "minus one" is with reference to the
number of observations beyond what you minimally need (one observation does
indeed determine a value for that measurement).  This could also be referred to
as the number of checks or number of degrees of freedom.  There is no standard
error unless you make at least two measurements.

The physical meaning of the standard error in a single observation is if you
made one more observation under the same conditions with the same equipment you
would be approximately 67% (one sigma) confident that you would fall within the
range defined between the average minus the standard error to the average plus
the standard error (average plus or minus the standard error).

If your worst residual (maximum spread in the .gen report) is more than the
standard error that is not cause to be alarmed.  Approximately 33% of your data
will fall outside, so obviously we cannot be discarding that amount of data as
surely not all of those are blunders.  Using three times the standard error as a
blunder detection device brings approximately 95 % confidence that the outlier
should be discarded.  The three sigma rule for blunder detection is quite common
across disciplines who make measurements.

3.1.3  Standard error in the mean (average)

The standard error in the mean is the standard error in a single observation
divided by the square root of the number of observations.  A standard error in
the mean is half the magnitude of the standard error in a single observation if
the number of observations is four. 

The physical meaning of the standard error in the mean  is if you made one the
same number of observations under the same conditions with the same equipment
you would be approximately 67% (one sigma) confident that you would fall within
the range defined between the average minus the standard error in the mean to
the average plus the standard error in the mean (average plus or minus the
standard error in the mean).

The standard error in the mean reflects that increasing reliability by
repetition has diminishing returns as the number of repetitions grow.
To first halve standard error in a single observation you need 4 repetitions. 
To halve it again you need 16 repetitions, and to halve it yet again you need 64
repetitions

3.1.4  Significance of standard errors

The standard error in the mean reflects the uncertainty in the average as
opposed to a single observation.  Obviously under the same measuring conditions
a horizontal angle observed eight times will usually have less uncertainty than
a horizontal angle measured twice.  Other factors can play a role in this
determination.  If the angle measured eight times had a 12 meter backsight and 6
meter foresight you would probably feel less certain about it than the angle
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measured only twice where the backsight and foresight distances were more than
500 meters.  The "same measuring conditions" rule does not apply in that
comparison.  Likewise a setup with very short sight distances may by coincidence
have its horizontal angle measured twice and repeat perfectly.  The perfect
repetition does not reflect our surveyor's knowledge of the problems with short
sight distances.

The standard error derived from repetition is thus an estimate of uncertainty,
and not an absolute mechanism in surveying for assessing data quality.  Standard
errors are simply based on repetition,  and do not account for errors such as
instrument positioning over a point or the leveling of the instrument.  A
standard error can thus be used more effectively if we add surveyor insight into
the overall model.

3.2  Maximum spread

The maximum spread is the largest deviation of any single observation from the
mean.  In other words, it is the largest residual (absolute value) derived from
an averaging process.  The maximum spread is the best indicator of a blunder in
a repetition process, while the standard errors are the better indicators of
data uncertainty.

3.3  Same line / different setup comparison

One of the best checks of horizontal distances and elevation differences is
measuring the line on more than one setup.  In a traverse mode the second setup
is usually at the sighted station of the first setup, and generally results from
a prism being measured to on the backsight.  This procedure is common as
averaging elevation changes measured in opposite directions on a line can help
eliminate most systematic errors due to earth curvature and atmospheric
refraction.

This check is better than standard errors and maximum spreads as it does check
for blunders that cannot be checked by simple repetition.  These blunders
include failing to check the setup over a point, leveling of an instrument, and
some types of station naming problems.  The use of it in blunder detection is
described in the EFBP user's guide.
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Chapter 4.  Weighted averaging

Any horizontal distance or elevation difference measured on more than one setup
is averaged at the same time the comparison of the two values is made for
blunder detection purposes.  A simple average is could be used in this process,
but instead to take advantage of the data uncertainty estimates (usually called
error estimates) generated by EFBP a weighted average is used.  Error estimates
can be generated totally by user supplied constant and ppm input error values,
or can be generated as a function of the standard error in the mean plus user
defined additions which are defined by constant and ppm add-ons.  The error
constants and add-ons are defined in EFBP's opening setup menu.  The choice of
user defined error estimates or standard error plus add-ons is also defined in
this initial menu.

The weighted averaging process will first be illustrated.  This will be followed
by a discussion of the two choices in error estimate generation.

4.1  Example

Assume the first measurement of a line is 100.00 with an error estimate of 0.01
and the second measurement is 100.04 with an error estimate of 0.02.  The
weighted average is computed by:

[ 100.00 * (1/0.01) + 100.04 * (1/0.02) ]  = [ 100.00 * 100 +100.04 * 50]
        [ (1/0.01) + (1/0.02) ]                   [100 + 50]

which produces an average value of 100.013.  The inverse of the error estimate
becomes the weight, and thus the first measurement received four times the
weight of the second measurement.  This would be the same as a simple average of
two 100.00 measurements with the 100.04 value.  Note this allows the better
measurement (smaller error estimate) to have more of an affect in the averaging
process.  This method is the same whether the measurement is a horizontal
distance or an elevation difference.

The error estimate for the weighted average value will be

 [sqrt (2) * 0.01 * 0.02 ] / [0.01 + 0.02] = 0.009

where sqrt (2) means the square root of 2.00.  The formula for the error
estimate of the weighted average is sqrt (2) * error est. #1 * error est. #2
divided by the sum of the error estimates.

4.2  Error estimation by standard errors plus add-ons

Assume a 300.000 meter slope distance and zenith angle were measured by
repetition and produced standard errors in the mean for horizontal distance and
elevation change of 0.002 m. and 0.008 m. respectively.  Most surveyors were
judge these values to be optimistic in being used directly as error estimates
for reasons previously discussed.  In EFBP's initial menu horizontal distance
constant and add-on parameters of 0.005 m. and 10 ppm were entered respectively.
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 For elevation changes by trigonometric leveling constant and ppm errors of
0.007 m. and 100 ppm were entered.

The horizontal error estimate would be 0.002 + 0.005 +(10/1000000)*300
or 0.002 + 0.005 + 0.003 = 0.010 m.  The elevation change error estimate would
be 0.008 + 0.007 + (100/1000000)*300 = 0.008 + 0.007 + 0.030 = 0.045 m.  The
error constant add-on could be thought of accounting for setup error that
affects linear measurements, and the ppm add-on is due to the fact that longer
lines generally contain more error in these types of measurements.  The ppm add-
on is usually larger for trigonometric leveling than horizontal distance as
common surveying practice acknowledges that error in trigonometric leveling
grows faster for a longer distance than for horizontal distance.

With non-zero constant and ppm error add-ons even perfect repetitions,
producing a standard error in the mean of zero, will receive a non-zero error
estimate.  This is important because perfect repetition definitely does not
reflect that a measurement contains no error.

4.3  Error estimation by user definition

Some users may feel error estimation partially based on standard errors from
repetition is not a desired procedure.  The other option is totally by user
definition independent of repetition error.  EFBP allows user defined values for
constant error for horizontal distance, constant error for elevation difference,
and a single ppm error for both types of measurements.  Assume a user has input
horizontal constant error of 0.008 m., elevation difference constant error of
0.02 m., and a ppm error of 10 ppm.  A 300 m. distance, independent of
repetition error, would produce a horizontal distance error estimate of 0.008 +
(10/1000000)*300 = 0.011 m. and an elevation difference error estimate of 0.02 +
(10/1000000)*300 = 0.023 m.  Logically, the constant error for trigonometric
leveling should be larger than the constant error for horizontal distance as it
is more difficult to measure.

If error estimates from repetition is not utilized, the weighted average turns
into a simple average because the error estimate for all measurements of a line
will be equal.

Even if error estimates from repetition is being used, there will obviously be
situations where a measurement is not repeated at a setup.  The error estimate
will thus be generated from the error estimates (not add-ons) by user
definition.  It is thus possible to perform a weighted average of a value with
an error estimate generated from standard error and add-ons with a value that
was not repeated and thus has its error estimate derived from user input
constant and ppm values.

4.4  How many distances and elevation differences of a line are in the least
squares analysis?

Since multiple setups which measure a horizontal distance or elevation change
are subjected to weighted averaging only one final averaged value is subjected
to the least squares analysis.  This helps ensure a proper number of degrees of
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freedom which is based on the geometry of the survey network, and not enhanced
by repetitive measurements of the same line.

4.5  Why angle weighted averaging does not occur in EFBP

Horizontal angles are not subjected to a weighted average for several reasons. 
The first is that horizontal angles on not as often measured multiple times on
different setups - measuring to a prism on a backsight creates the need for
weighted averaging of horizontal distances and elevation differences.  A common
field practice is to measure both the interior and exterior angles when
traversing.  If measured on separate setups, including both in the least squares
has some validity as residuals can indicate a better fit of one of the angles,
which in turn indicates a possible setup error in the angle with the larger
residual.  Multiple occupations of the same setup can create a multitude of
angles with different backsights which in turn makes angle averaging difficult
as it would require definition of a single backsight from all of these angles. 
This may not be how the field data was collected.  It was thus decided that the
complications of angle averaging made placing all of them in the least squares
analysis the suitable solution.
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Chapter 5.  Earth curvature & atmospheric refraction correction

Elevation differences derived from a total station need to be corrected for
earth curvature and atmospheric refraction.  It is also possible to correct
differential leveling for these values but due to short sight distances it is
not being performed in EFBP as it is negligible.

Atmospheric refraction bends a line of sight downward and thus it causes a line
of sight to be lower than if no atmosphere existed and the line of sight was not
bent.

To consider earth curvature better, pretend atmospheric refraction does not
exist.  It would be desired for a line of sight to parallel the curve of the
earth.  This is not possible as the line of sight is straight, and thus this
sight is above the curved line, which means earth curvature causes a zenith
angle to be above where it should be.

Since the errors are in opposite directions, if they were equal in magnitude
they would cancel.  For a standard atmosphere, atmospheric refraction has only
1/7th the effect of earth curvature.  Thus the cumulative affect is the line of
sight is too high which creates a elevation change which is too negative, and
thus a positive correction is always applied to the elevation difference for
earth curvature and atmospheric refraction.

The amount of correction in feet is 0.0206*(F/1000)2 where F is the slope
distance in feet.  If in meters the correction is 0.0675*(M/1000)2 where M is
the slope distance in meters.

Note the correction grows as a squared function of the distance.  A sight
distance of 100 ft. produces a correction of only 0.0002 ft. so it is
insignificant.  500 and 1000 ft. sight distance produces corrections of 0.005
ft. and 0.021 ft. respectively.  Since a trigonometric elevation difference
derived from a 1000 ft. sight distance is rarely accurate to 0.02 ft., it could
be stated the earth curvature and atmospheric refraction corrections are
insignificant for normal surveying practice.

The user has the ability to toggle the correction on or off in the initial EFBP
menu.  Some total stations have an ability to also toggle the correction on or
off.  Be very careful as the correction is often only applied to reduced values,
and raw data is stored in the .obs file.
To determine if a total station corrects raw data call your local dealer or
measure to a precise locatable point with the correction on and off and see if
any change if raw data is noted.
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Chapter 6.  Horizontal datums

EFBP can automatically reduce data to state plane coordinate projections in NAD
27 or NAD 83.  It is also possible for someone to create their own user defined
projection coordinate system which is not necessarily not sea level.  A zone
identification number of 9999 indicates a user defined zone.

Note horizontal datum and state plane zone (NGS zone number) are stored in the
control .ctl file.  A lack of horizontal datum and state plane zone indicates
assumed coordinates are being used.

6.1 Assumed horizontal datum (no geodetic datum)

There are situations where a surveyor chooses to use an assumed coordinate
system and apply no geodetic/state plane reductions.  This is very useful for
checking for blunders in survey measurements, and determining relative distance
and bearing changes between stations.  Use of state plane coordinates in a
control file with no datum or state plane zone designation will produce
incorrect state plane coordinates as no scale or elevation factors can be
applied.  It is thus suggested when using assumed coordinates to make them
"look" very different than state plane coordinate values in that general area.

If you are using EFBP without a control file, the first setup is assigned
horizontal coordinates of 10000,10000 and due north is assumed to the first
station sighted at that setup.

6.2  North American Datum of 1927 (NAD 27)

This is based on the Clarke ellipsoid of 1866.  The units for distance and state
plane coordinates were defined in U.S. Survey Feet, and thus EFBP will only
process in this datum in English units.  This datum was created by fixing a
latitude/longitude at station Meade's Ranch, Kansas, and fixing a geodetic
azimuth to a nearby azimuth mark.  The type of measurements which made up the
geodetic control network for this datum was primarily triangulation as EDM's had
not been invented.  The production of coordinates had to occur without the use
of computers!  All geodetic and state plane coordinate production prior to 1986
was with respect to this datum.

6.3  North American Datum of 1983 (NAD 83)

This is based on the World Geodetic Reference ellipsoid of 1984.  The units for
distance and state plane coordinates were defined in meters, with conversion to
U.S. survey feet or international feet left up to the user's
preference.  No fixed control existed.  The type of measurements now included
traverse, doppler, and the global positioning system (GPS) in addition to
triangulation.  It resulted in a least squares adjustment of approximately
250000 stations and resulted in new (better) coordinates for stations which had
coordinates in NAD 83.  Not all stations which had NAD 27 coordinates were part
of this adjustment, and it is thus often desirable to convert these coordinates
to NAD 83.  The National Geodetic Survey (NGS) has produced a public domain
program called NADCON for this purpose (geodetic coordinates only).  The Army
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Corps of Engineers updated NADCON with more options such as NAD 27 state plane
to NAD 83 state plane.  This public domain program is called CORPSCON. 

The exact conversion between meters and U.S. survey feet is 1 meter = 39.37
inches.  The exact conversion between meters and international feet is 25.4
millimeters = 1 inch.  If performing a survey in English units in NAD 83 the
surveyor must know if the particular state he or she is in has passed
legislation stating which foot should be used.  If the state has not passed
legislation one should find which foot is being used by the agency one is doing
work for.

One should not worry if which foot is used for one's measurements.  The
difference in a 1000 ft. distance is only 0.002 ft., and thus not within the
measuring ability of conventional survey measurements.

6.4  Other - region, local supernetwork, High Accuracy Regional Network (HARN),
etc.

Due to the advent of the global positioning system several states and regions
have found it desirable to create a high precision network of GPS observations,
and perform a least squares analysis of it for coordinate production.  This will
use the NAD 83 ellipsoid and NAD 83 state plane zone constants.  A station which
has coordinates in NAD 83 and the high precision network will not be equal, and
differences are usually less than one foot.  This makes unlabelled coordinates
nearly impossible to detect as NAD 83 or supernetwork.  Supernetworks are
usually labelled such as NAD 83 (90) which implies the supernetwork coordinates
which were published in 1990.

EFBP permits tagging of any two digit year to a horizontal datum in the control
(.ctl) file which will be also be placed in the final coordinate (.XYZ) file.  A
year greater than 82 indicates NAD 83 datum and state plane zone constants will
be used.  A year greater than 83 indicates the coordinates are referenced to a
regional supernetwork.

No mixing of control coordinates from different datums in one job should ever
occur as there are systematic shifts between them.
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Chapter 7. Vertical Datums

A vertical datum is not significant numerically to EFBP as geodetic reductions
such as scale factors, elevation factors, and convergence angles are only
applied to 2-D (horizontal) measurements.  Nonetheless, it is very important to
label control (.ctl) and final (.xyz and .soe) elevations with a vertical datum
number.  A lack of vertical datum number indicates an assumed vertical datum is
being used.  A vertical datum is designated with a 2 digit number in the .ctl,
.xyz, and .soe files.

7.1 Assumed vertical datum (no geodetic reference)

This would indicate the benchmarks used are with respect to some arbitrary
reference.  If you are using EFBP without a control file, the first setup is
assigned an arbitrary elevation of 500.00 .

If you have a geodetic horizontal datum and an assumed vertical datum, the
elevations should at least be derived from interpolating from a map with
reference to a vertical datum.  This is because elevation factors in the
geodetic reductions are based on the elevations in the .ctl file, and it is
assumed these elevations are with respect to a vertical datum.

7.2 National Geodetic Vertical Datum of 1929 - NGVD 29

This was the only national geodetic vertical reference until approximately 1993.
 It was the production of elevations from differential leveling which was
compiled by NGS at that time.  Elevations were published in feet, and a series
of benchmarks near the coastline were held fixed to force the datum to be
referenced close to mean sea level.  All benchmarks and contour maps published
prior to 1993 by NGS, the U.S. Geological Survey and other federal and state
mapping agencies were with respect to this datum.

7.3 North American Vertical Datum of 1988 - NAVD 88

The plethora of leveling observations which succeeded NGVD 27 plus better
gravity measurements created the need for a redefinition of the vertical datum
in North America.  While labeled NAVD 88, the elevations were not published
until 1993.  All elevations are published in meters, and a user follows the same
logic as horizontal coordinates in converting to either U.S. survey or
international feet.  Only one benchmark (near the mouth of the St. Lawrence
River) was held fixed in the least squares adjustment of more than 200000
benchmarks.

Elevations for the same benchmark in NGVD 29 and NAVD 88 will not be equal. 
Many benchmarks with NGVD 29 elevations were not included in the NAVD 88 and
thus need translation to it.  NGS has provided public domain program VERTCON for
that purpose.

7.4  Local datum
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It is possible in an area to have a local datum which is offset from either NGVD
29 or NAVD 88.  This should be labeled in the .ctl and .xyz files with a
vertical number other than 29 or 88.
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Chapter 8.  State plane projections

State plane coordinates are based on two types of projection systems - a Lambert
Conic Conformal or a Transverse Mercator.  States that are elongated north-south
tend to use Mercator zones and states elongated east-west tend to use Lambert
zones.  Florida is an example of a state elongated in portions of the state in
different directions, and is thus made up of both Lambert and Mercator zones. 
All zones have central meridians with defined longitudes which point true north-
south except for one Mercator zone in Alaska where the central meridian is
offset 45 degrees from true north.  This is called an oblique Mercator
projection.

In NAD 1927 state plane zones the size of state plane zones were limited by the
fact that the difference between a grid distance and a ground distance reduced
to the ellipsoid would not exceed 1/10000.  The difference between these two
distances is known as the scale factor.  The scale factor varies according to
your location in a zone, and deviates furthest from unity at the center and
extremes (E-W in Mercator, N-S in Lambert) of the zone.  Thus larger states have
more zones than smaller states.

In NAD 83 some states decided to eliminate some zones which in some cases now
makes the difference between grid and ellipsoid distance greater than 1/10000. 
Some states also changed some zone origins, central meridian longitude, or
meridian lines of scale factor of one.

8.1 Lambert conical projection

The Lambert projection is a cone which intersects the ellipsoid at two defined
longitudes where scale factor would be one.  The scale factor does not change in
an east-west direction.

8.2 Transverse Mercator projection

The Mercator is a cylindrical projection where the centerline of the cylinder is
running in an east-west direction.  The cylinder intersects the ellipsoid at
defined longitudes.

8.3  Zone origin, false northings, and false eastings

An origin for the zone is defined by latitude and longitude.  A false easting is
assigned to the central meridian which prevented negative eastings.  While
sometimes the origin received a false northing, it was more common to set the
false northing of the origin to zero as it was far enough south of the location
of the zone to prevent creation of negative northings.

8.4  NAD 27 vs. NAD 83

To force NAD 83 state plane coordinates to look different than their NAD 27
equivalents two items were instituted.  NAD 83 state plane coordinates were
published by NGS in meters, while NAD 27 state plane coordinates were published
in feet.  In addition the false easting (and in some cases also the false
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northing) were changed so that even if coordinates in NAD 83 were converted to
feet they would not match their NAD 27 counterparts.  In most cases false
eastings in NAD 27 Lambert zones were 2000000 ft. in NAD 27 to and NAD 27 
Mercator false eastings were 500000 ft.  The false eastings in NAD 83 actually
vary from state to state.

8.5  Difference between grid distance and ground distance

The grid distance between two points is simply the pythagoreum plane of the end
point coordinates.

Grid distance is computed from ground (horizontal) distance by:

Grid distance = Ground distance * scale factor * elevation factor

and thus ground distance is computed from grid distance by:

Ground distance = Grid distance / (scale factor * elevation factor)

Scale factor for a line is usually computed by averaging the scale factors at
the end points of the line.  Remember the scale factor is a function of your
location in the zone.  The elevation factor is derived from the average of the
end point elevations (ave. elev.) and in feet is computed by:

elevation factor = 20906000 / (20906000 + ave. elev.)

where 20906000 ft. is a suitable approximation for the radius of the earth.
The metric equivalent of 20906000 can obviously be computed and then ave. elev.
can be entered in meters.

It should be noted that it is theoretically correct to reduce to the ellipsoid,
and not the geoid (elevation reference).  The difference between the geoid and
ellipsoid is approximately 20-30 meters in North America, which causes an error
in elevation factor of approximately 1/200000.  This makes it smaller than our
usual random errors in surveying, and thus using elevation, not ellipsoid
height, is valid.

8.6 Convergence angles and T-t corrections

A convergence angle is the difference between grid north and forward geodetic
north at a point.  A forward geodetic azimuth at a station is the angle from
geodetic north to another station. Geodetic north lines converge to the north
pole and therefore only parallel at the equator.  Grid north (state plane north)
lines are parallel to one another.  The convergence angle is zero at the central
meridian because grid north and geodetic north coincide.

The equation which relates azimuths in the two systems is:

grid azimuth = geodetic azimuth - convergence angle + T-t correction

or
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geodetic azimuth = grid azimuth + convergence angle - T-t correction

Convergence angles are thus negative when west of the central meridian and
positive when east of the central meridian.  The T-t (second term) correction is
insignificant on typical survey distances but can become a few seconds for lines
longer than a mile near the edge of a zone.

Horizontal angles are reduced to grid by only T-t correction:

grid angle = geodetic angle + foresight T-t corr. - backsight T-t corr.

Again the T-t correction rarely exceeds tenths of seconds.  This correction is
due to the fact that horizontal angles measured on a curved earth need to be
reduced to the flat state plane grid.

8.7 Forward vs. mean vs. reverse geodetic and astronomic azimuths

While different in format, the term azimuth equally applies to bearings in this
discussion.  In the previous section we have defined the relationship between
grid and forward geodetic azimuths.  A reverse (back) geodetic azimuth is the
forward geodetic azimuth from the sighted station back to the occupied station.
 The forward and reverse azimuth do not differ by 180 degrees, except on a
north-south line, because of convergence of meridians towards the north pole. 

The mean geodetic azimuth of a line is the average of the geodetic forward and
reverse bearings.  It is a line of constant bearing and is thus a curved line on
the face of the earth.  An east-west section is an excellent example of a line
that represents mean bearing as it is intended to be a line of constant
latitude.

Astronomic azimuths are similar in nature to geodetic equivalents, except that
its reference is astronomic north.  Astronomic north is determined from
surveying measurements to stars or the sun.  The difference between astronomic
and geodetic north is a function of the direction of gravity, and thus varies
according to your location.  In most parts of the United States the difference
between astronomic and geodetic north is less than one second.  NGS has a public
domain program available called DEFLECT90 which outputs the difference between
geodetic and astronomic north based on input latitude/longitude.

8.8 How does EFBP do state plane reductions?

The abstracting initial phase of EFBP identifies redundant stations, and
generates preliminary coordinates for the least squares analysis by automatic
coordinate geometry computations.  Even without using state plane reductions,
these preliminary coordinates are rarely most than 10 feet from their least
squares adjusted values. 
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The second component of EFBP is the 1D least squares analysis and sideshot
computations for all 1-D sideshots.  This produces elevations for all stations
which can be used for elevation factors for any 2-D coordinate computations.

The third component of EFBP is the 2D least squares analysis.  It uses the
preliminary coordinates from the abstracting stage to obtain point scale
factors.  The end point scale factors of a distance are averaged to obtain a
scale factor for that line.  Scale factors change minimally over survey
measurement type distances, and thus the preliminary coordinates are as good as
the final least squares adjusted values for scale factor generation.  Every
point has an elevation from the 1D computations and thus an average of the end
point elevations for a line can be used to generate elevation factors.

If geodetic azimuths exist in the .ctl file, the preliminary coordinates are
used to compute a convergence angle for reduction of that azimuth to grid. 
Similarly the preliminary coordinates are used to generate T-t corrections for
all geodetic azimuths and horizontal angles.

Sideshots are generally fairly short lines and thus the scale factor change,
elevation factor change, and T-t corrections will be negligible.  Thus the
horizontal sideshots, which are based on the least squares adjusted coordinates
of the redundant stations, utilize the sideshot's occupied station's point scale
factor and elevation factor.

Thus it has been defined how all measurements reductions to grid are
automatically employed.  It has also been defined how all sideshot computations
are based on the results of the least squares analysis.
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Chapter 9. Sideshot identification algorithm

EFBP requires no identification of sideshot vs. redundant observation or
station.  EFBP automatically identifies the sideshots via the "connectivity" of
the survey as defined by observation station name.

Note a 1D sideshot can be a 2D redundant point, and vice-versa.  A benchmark
which is only measured from one station is a 2D sideshot, but is  definitely not
a sideshot vertically.  A 2D (horizontal) control point that is only measured
from one other station will not be a redundant 1D station.

Performing a 1D/2D analysis allows for the uniqueness that many times the
redundant 1D network is different from the redundant 2D network because not all
survey control is usually 3D in nature.  The 1D/2D approach also allows one to
integrate differential leveling, station-offset, 2-D traverse, and 3-D traverse
into the same job.  The 1D/2D approach has also been shown
by the author (see references) to be more suitable for reduction of conventional
survey measurements, and in all cases producing statistically the same results
as a full 3D approach.

9.1 1D sideshot identification

The only measurements in the 1D analysis are elevation differences and
benchmarks.  An elevation difference connects two stations.

The 1D sideshots algorithm looks for stations that are not benchmarks that are
only connected to one other station.  These are sideshots and are "pruned" from
the remainder of the data.  The process is repeated until
there are no sideshots left to prune.  This iterative process allows for spur
traverses with no redundancy to be all identified as sideshots.
This algorithm then removes any benchmarks which were in the control file which
had no measurements connected to them.

9.2 2D sideshot identification

The 2D analysis is composed of horizontal distances, horizontal angles,
azimuths, and control coordinates.  The first three types of data connect
stations to one another.  A sideshot is defined as a station that is not a
control station, is not an occupied station on a horizontal angle, and is only
on one distance and angle which are from the same station.  If a station has one
distance and two angles from the same setup to it, this is not a sideshot as
there is angular redundancy to it.  A station uniquely located by angle-angle
intersection, angle-distance intersection, distance-distance intersection or
resection will not be considered as sideshots even though there may be no
redundancy to it.  This is because the sideshot computation process in EFBP
assumes one angle-distance from the same station.  Note EFBP automatically
recognizes any type of intersection or resection.

The 2D sideshots algorithm looks for stations that are not 2-D control that are
only connected to one other station by an angle-distance.  These are sideshots
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and are "pruned" from the remainder of the data.  The process is repeated until
there are no sideshots left to prune.  This iterative process allows for spur
traverses with no redundancy to be all identified as sideshots.

Horizontal control that is not connected to any other stations is carried along
to the final .xyz file that is imported into a survey/engineering design
software system.  This is because some horizontal coordinates not connected by
the survey can be important in the later computational process.  As an example
the coordinates may be for a section corner (which was coordinated in a previous
survey) which is going to be used in a proportion or subdivision computation.
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Chapter 10. Estimation of errors in measurements

While the estimation of a survey's random errors is important at all times, in
use of least squares it has special meaning.  The key item to remember is this
is "estimation", and one should not feel there needs to be exactness in the
process.

10.1 Error estimation importance in least squares analysis

Least squares minimizes the sum of the weighted residuals squared.  A weighted
residual is the error estimate divided by its error estimate (thus a snoop
number in a .1D or .2D report).  That value needs to be squared because a
residual can be either positive or negative.  Note a weighted residual is
unitless as the residual and error estimate have the same units.  This enables
different types of measurements to be compared to one another as the weighting
process makes everything unitless.

Not only do the error estimates enable simultaneous analysis of different
measurement types, likewise it enables measurements of the same type to have
varying affects (weights) on the final results.  A paced distance is a valid
form of measurement if assigned a proper error estimate (perhaps 5 ft. per 100
ft.) relative to a EDM distance (.01 ft. plus 5 ppm).

10.2 Error estimation from repetition error plus add-ons

Repetition can be an indicator of an error estimate, but it is usually too small
to be used absolutely as an error estimate.  As an example, repetition error
does not model setup errors at the instrument or prism.  It also possible to
obtain perfect repetitions, but this does not mean the measurement is perfect. 
The first form of error estimation EFBP allows is repetition error plus user
assigned add-ons which model the errors which repetition cannot model.

10.3 Error estimation without influence of repetition error

Some people feel repetition error should only be used for blunder detection and
not in error estimation calculations.  A user can thus toggle off error
estimation from repetition plus add-ons and instead use user defined constants.
 If a measurement is not repeated EFBP will use the user defined constants no
matter what form of error estimation has been selected.

10.4 Horizontal distance

Horizontal distance error estimation is usually associated with a constant
error/add-on plus a ppm (parts per million) error/add-on.  The ppm assigns
larger error estimates to longer lines.  Typical total station error estimate
add-ons to repetition error are 0.005-0.01 ft. (0.002-0.004 m) and 2-10 ppm. 
Typical error estimate constants are 0.01-0.02 ft. (0.004-0.008 m) and 5-20 ppm.
 Note the constant is in ft. or m. while the ppm is unitless.

10.5 Trigonometric or differential leveling elevation difference
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Trigonometric elevation difference error estimation is usually associated with a
constant error/add-on plus a ppm (parts per million) error/add-on.  The ppm
assigns larger error estimates to longer lines.  It is a well known fact that
error in trigonometric leveling propagates faster for longer distances than the
error in horizontal distance.  Typical total station add-ons to repetition error
are 0.02-0.05 ft. (0.008-0.02 m) and 30-100 ppm.  EFBP only supports error
estimate constants for trigonometric leveling which typically are 0.03-0.10 ft.
(0.01-0.03 m).  Note the constant is in ft. or m. while the ppm is unitless.

Differential leveling does not usually require any form of repetition. 
Therefore independent of type of defined error estimation elevation differences
at a setup are assigned a user defined error estimate which usually ranges from
0.002-0.01 ft. (0.001-0.003 m.).

10.6 Horizontal angles

Horizontal angle error estimation is usually associated with a constant
error/add-on plus a setup error.  The setup ensures that shorter lines receive
larger error estimates as measuring directions on a shorter line is more
difficult than on a longer line.  Setup error can be thought of our inability to
position exactly over the occupied or sighted station.  The error due to setup
is the inverse tangent of the setup error (ft. or m.) divided by the length of
the line.  Typical total station constant error add-on is usually 3-20 seconds,
while the constant error estimate is usually 6-30 seconds.  Setup error is used
in both methods of error estimation, and is generally 0.003-0.01 ft. (0.001-
0.003 m.).  Setup error is linear units sensitive.

If repetition error plus add-ons is used, error estimate of a angle is:

SQRT (repetition error2 + constant add-on2 + BS setup err.2 + FS setup err.2)

If user defined error estimation is used, error estimate of an angle is:

SQRT (constant err.2 + BS setup err.2 + FS setup err.2)

10.7 Azimuths

EFBP only accepts azimuths in the .ctl file.  In the CTL program you are able to
assign error estimates to them.  The azimuth add-on in the EFBP menu is there
for future implementation only.

If the azimuth error estimate has not been entered into the .ctl file, the
azimuth error estimate constant in the EFBP menu will be used.

No matter which of these two procedures apply, setup error is always added to
the constant error.  Setup error is calculated exactly as in horizontal angle
error estimation.

The azimuth error estimate is calculated from constant and setup error by:
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SQRT (constant err.2 + setup err.2)

10.8 Control coordinates

A control coordinate (horizontal or vertical) can be treated as a measurement
with an appropriate error estimate if one desires.  This will allow control to
adjust along with the rest of one's measurements.  The error estimate for
control coordinates is in the .ctl file.

Normally one wants to not allow control to adjust and thus when entering control
default error estimates are assigned of 0.001 ft. or m.  This error estimate is
so superior to your other measurements that control will not adjust.  Another
safeguard to preventing control from adjusting is that if error estimate from
user defined constants is selected (do not use repetition error) EFBP will
ignore values in .ctl and assign error estimates of 0.001 to all control.

Allowing control to adjust based on non-fixed error estimates has several
outstanding abilities.  Used with robustness, it is a powerful tool in finding
control problems which are often station naming or incorrect data entry.  It
also lets you evaluate the quality of your measurements without errors in the
control coordinates having an affect.  It also lets you weight different control
accuracies relative to one another.
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Chapter 11.  Validating quality of your measurements in least squares
redundancy

Least squares analysis provides a large number of indicators which evaluate the
quality of your measurements.  The key indicator is the residual which is the
difference between the measurement and its adjusted equivalent which is derived
from inversing final coordinates.  If all of your residuals are within what you
would call acceptable random errors in surveying, you should deem the final
coordinates acceptable.

11.1 Residual vs. error estimate

A residual and an error estimate for a particular measurement share a very
important relationship.  Simply looking at a residual does not always give you a
clear interpretation without observing its error estimate.

As an example consider two angle residuals of 10 and 60 seconds respectively. 
At first it looks like the second is much worse than the first and is indicative
of a blunder.  But the 10 second residual is associated with a 4 second error
estimate because of long sight distances, while the 60 second residual has a 12
ft. backsight distance and a 14 ft. foresight distance which created an error
estimate (mostly due to setup error) of 80 seconds.  Both are acceptable
measurements as the residuals and error estimates are within the same reasonable
level of magnitude.

One should be concerned when the residual is significantly larger than the error
estimate.  Simply being larger than the error estimate is not a reason for
concern as, from a statistical standpoint, only approximately 67% (one sigma) of
our acceptable measurements should have residuals smaller than our error
estimates.  A general rule of thumb is if any residuals are more than three
times the size of their respective error estimates a user is 95% certain there
is something wrong with at least one of the measurements or control coordinates.
 Note this may be numeric (measurement) or a station naming problem.  In most
cases the problem can be resolved and the data reprocessed without elimination
of the measurement.

A significant amount of large residuals of the same sign indicates systematic
error.  An example is a survey which ties to "good" control that produces all
negative distance residuals could be an indicator of an instrument/prism offset
constant error.

11.2 Snoop number

Looking at a large number of residuals and error estimates is difficult as one
has to mentally make the association of magnitude of the two quantities.  To
simplify this in both the 1D and 2D least squares reports snoop numbers are
associated with all measurements.

A snoop number is the absolute value of the residual divided by the error
estimate.  If the residual is larger than the error estimate the snoop number is
greater than one, and a residual which is smaller than the error estimate
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produces a snoop number less than one.  Snoop numbers greater than three are
flagged with asterisks to highlight a potential problem.  Usually a series of
flagged residuals can be traced to a single problem, and the asterisks go away
once the problem is resolved and reprocessing occurs.

The best part of the snoop number concept is how it relates to measurements of
the same type which have different error estimates.  Let us revisit the example
consider two angle residuals of 10 and 60 seconds respectively.  At first it
looks like the second is much worse than the first and is indicative of a
blunder.  But the 10 second residual is associated with a 4 second error
estimate because of long sight distances, while the 60 second residual has a 12
ft. backsight distance and a 14 ft. foresight distance which created an error
estimate (mostly due to setup error) of 80 seconds.  The 10 second residual
would produce a snoop number of 2.5, and the 60 second residual would produce a
snoop number of 0.75.  The snoop number shows the 10 second residual indicates a
worse observation than the 60 second residual.  The 2.5 snoop number is usually
regarded as acceptable, but is nearing the concern magnitude and thus may
warrant some investigation.

11.3 Root-mean-square error

The root-mean-square (rms) error is associated with a particular type of
observation type, and can be thought of as an average residual for that type of
observation.  To eliminate the affect of the positive/negative nature of
residuals, rms error is the square root of the sum of the squares of the
residuals divided by the number of that observation type.  Note it does not take
into consideration the differences in error estimates for a given observation
type.

11.4 Root-mean-square snoop number

RMS snoop number is for a given observation type, and is the square root of the
sum of the squares of the snoop numbers divided by the number of that
observation type.  It takes into consideration the differences in error
estimates, and is thus a better indicator of data quality than the standard rms
error.  Note a 2D adjustment may yield rms snoop numbers for horizontal
distances and angles of 0.4 and 2.8 respectively.  This could be an indicator
that your default error estimate parameters for distances should be tightened up
and the default error estimate parameters for angles loosened up.

Note that substandard control coordinates which are held fixed will produce
higher residuals and rms errors in the measurements.  One should be very careful
in evaluating your measurement residuals than some of it may be derived from its
"fit" to the control coordinates.

11.5 Maximum residual

Maximum residual is the largest (absolute value) difference between measured and
adjusted values for a particular type of measurement.  One quick way to verify
data quality is verifying if the maximum residuals are insignificant in size. 
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Note the maximum residual may not be associated with the largest snoop numbers
due to varying error estimates.

11.6 Degrees of freedom

Degrees of freedom is the amount of redundancy in an adjustment.  Redundancy is
the number of measurements beyond what is needed for unique computation of
coordinates.  Note this value is computed after sideshots are removed though
including them would not change the number of degrees of freedom.

In the 1D adjustment the number of degrees of freedom is the number of
benchmarks plus the number of elevation differences minus the total number of
stations.

In the 2D adjustment the number of degrees of freedom is the number of control
coordinates plus the number of distances plus the number of angles plus the
number of azimuths minus the total number of coordinates.  Note the number of
control coordinates is two times the number of horizontal control stations, and
the total number of coordinates is two times the total number of stations in the
2D least squares analysis.

11.7 Standard error of unit weight

The standard error of unit weight is the square root of the sum of the square of
the weighted residuals divided by the number of degrees of freedom.  A weighted
residual is a snoop number.  The standard error of unit weight is thus the
overall indicator of the fit of the error estimates to the residuals, and should
be near one.

11.8 Chi-squared test

The chi-squared test is an analysis of the suitability of the standard error of
unit weight.  The chi-squared test in EFBP is performed at 95 % (.05 level of
significance) confidence in what is termed a two tailed test.  The two tailed
test means the standard error of unit weight could be too high of low. 
Obviously a low standard of unit weight (less than one) should be considered
positive - you did better than expected - but the chi-squared test could "fail"
on this end.  Most people would consider doing better than expected not failure
but the chi-squared test is simply saying that in the future you may want to
start using tighter error estimation parameters.

The chi-squared low and high ends of success/failure are based on the number of
degrees of freedom.  A lower degree of freedom gives a larger spread.  This is
because a lower degree of freedom lends itself to more data variability, while a
higher number of degrees of freedom means the outliers have less affect on the
standard error of unit weight.  You are not being punished for higher degrees of
freedoms which produces tighter chi-squared high/low tolerances - data
variability simply has less affect when you have more degrees of freedom and
thus you need tighter high/low tolerances.
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If the chi-squared test passes you are 95% confident that there is no problem
with your data.  It is not easy to consistently pass this test as rarely in
surveying are you 95% sure about anything.  The magnitude of the snoop numbers
and residuals should by the judge of suitability even if the chi-squared test
fails.

11.9 Minimally constrained vs. constrained adjustment

A minimally constrained adjustment is one where a minimum amount of control is
used so that the least squares reports are based solely on one's measurements,
and not how one's data "fits" all control that has been tied to.  In a 1D
minimally constrained least squares one benchmark is held fixed, and in a 2D
minimally constrained analysis one control point and one azimuth are held fixed.
 To derive meaningful results from a minimally constrained adjustment one must
ensure a reasonable amount of redundancy can still be achieved in absence of
redundant control coordinates.

If sufficient redundancy exists the minimally constrained and constrained
analyses can be compared to see if any lack of fit between measurements and
control coordinates.

EFBP provides two mechanisms for a quick procedure for obtaining a minimally
constrained analysis.  If no control (.ctl) file exists EFBP will assume
arbitrary 3-D control coordinates of (10000,10000,500) for the first setup and
an azimuth of due north to the first sighted station.
If a control file exists one can assign large error estimates to the control and
render its affect on the measurement residual statistics null.
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Chapter 12.  Validating repeatability of coordinate production in least squares

Least squares can estimate the quality/repeatability of adjusted coordinates
through post-adjustment coordinate standard deviations and error ellipses.  EFBP
computed these values at a 95% level of confidence.
These computed values are all relative to control coordinate location, i.e.,
repeatability/reliability of a coordinate close to control is of a smaller
magnitude than a coordinate which is a long distance or number of stations from
control.

12.1 Introduction - geometry considerations

Geometry of the survey network has an affect on post-adjustment standard
deviations and size of error ellipses.  It also validates what we know about how
error propagates in surveying.  As an example, trigonometric leveling would
produce larger elevation standard deviations than a differential level survey
through the same points.  A traverse running north-south will produce smaller
northing (Y) than easting standard errors.  This is because we measure distances
more precisely than angles due to the EDM, and this makes coordinates in the
direction of the traverse more reliable than coordinates which are perpendicular
to the traverse direction.  Finally, an intersection which produces a very non-
equilateral triangle will produce higher coordinate standard deviations than an
intersection where the triangle is near equilateral.

12.2 F statistic multiplier

To achieve more than one sigma (67%) confidence the F statistic multiplier is
applied to all coordinate standard deviations and error ellipse dimensions.  The
size of the multiplier is a function of desired confidence level (EFBP produces
everything at the 95% confidence level) and the number of degrees of freedom. 
The multiplier decreases in size as the number of degrees of freedom increases.

One standard deviation standard errors and error ellipse dimensions are
converted to 95% confidence via the F-statistic multiplier.

This value is (three significant figures):
    
     # of degrees   F statistic
     of freedom     multiplier
          1             20.00
          2              6.16
          3              4.37
          4              3.73
          5              3.40
          6              3.21
          7              3.10
          8              2.99
          9              2.93
         10              2.86
     # of degrees   F statistic
     of freedom     multiplier
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         11              2.83
      12 - 14            2.77
      13 - 18            2.71
      17 - 26            2.64
      25 - 36            2.58
      35 - 46            2.55
      45 - 60            2.52
      59 - 75            2.51
      74 - 90            2.50
      89 - 120           2.49
      119 - 150          2.48
      149 - 180          2.47
      179 - 210          2.46
         210+            2.45
    
This tells you adding degrees of freedom initially enhances your ability to have
better confidence in your work.  Note after approximately 25 degrees of freedom
the F-statistic goes down very slowly.

This is analogous to why after a certain point repeated measurement of a value
does little good in improving its standard deviation in the mean.
    
The other value affecting standard errors of coordinates and error ellipse
dimensions is that the standard error of unit weight is also applied as a
multiplier.  This makes sense as a standard error of unit weight of 1.0
indicates approximately twice the quality of a standard error of unit of 2.0.
    
     Example:
    
     standard error of unit weight = 1.34
     degrees of freedom = 10 -- F- statistic multiplier = 2.86
     one standard deviation coordinate error = 0.034 m. (assumes        standard
error of unit weight = 1.00)    

   95% confidence coordinate error = 1.34 * 2.86 * 0.034 = 0.13 m.
    
Weak geometry/ strong geometry in intersections and resections shows up very
quickly in evaluations of error ellipses and coordinate errors. Likewise the
inherent larger errors in eastings in north-south road projects is evident in
reviewing error ellipses.
    
12.3 Coordinate standard deviations

EFBP produces all post-adjustment coordinate standard deviations at a 95% level
of confidence based on the F statistic multiplier and the standard error of unit
weight.  Coordinate standard errors will be smaller near fixed control as the
repeatability of that coordinate is easier than a station which is further away
from control.



34

34

The meaning of the post-adjustment coordinate standard deviation is if you went
and performed the same survey over using the same equipment under the same
conditions you are 95% sure the second survey's coordinate will be  within
(plus-or-minus) the standard error about the first survey's coordinate.  The
standard error gets larger for higher confidence levels.

Post-adjustment standard deviations are very much a function of survey geometry.
 As an example, a north-south traverse will generally produce  smaller northing
errors than the easting error for the same point.  The easting errors could be
reduced by astronomic observations, additional control, or ties in an east-west
direction.

12.4 Error ellipses

Error ellipses are output by EFBP at 95% confidence, and are thus multiplied by
the F-statistic multiplier and the standard error of unit weight.  An error
ellipse is defined by SU - semi-major axis, SV - semi--minor axis, and T - angle
of the semi-major axis off north (clockwise positive).  A semi-axis is from the
center to the external edge of the ellipse.  The semi-major is the longest axis
of the ellipse, and the semi-minor is the shortest axis and is 90 degrees from
the semi-major axis.  The least squares adjusted coordinate is at the center of
the ellipse.  Error ellipses will be smaller near fixed control as the
repeatability of that coordinate is easier than a station which is further away
from control.

The meaning of the error ellipse is if you went and performed the same survey
over using the same equipment under the same conditions you are 95% sure the
second survey's coordinate will be  within (plus-or-minus) the error ellipse
about the first survey's coordinate.  The error ellipse gets larger for higher
confidence levels.

Error ellipses are very much a function of survey geometry.  As an example
consider a tower a long distance from the job site which is being used simply as
a direction check from a number of stations.  Since it is very doubtful good
geometry of equilateral triangles exists, the error ellipse for the intersection
will be large, especially in the direction of the survey lines to the tower.  In
this case this is expected, and there is nothing wrong with the measurements to
the tower unless large residuals exist to it.  It still provides a good
directional check for the job, but its final coordinates should not be treated
as fixed if another survey ties to it.

12.5 Repeatability of derived quantities
The post-adjustment statistics of coordinate standard deviation and error
ellipse indicators of reproducibility if one performed the same survey over
under the same conditions.  A subsequent survey which does not exactly follow
this rule should not be using this information as you not comparing relatable
items.  Any post-adjustment standard deviation or error ellipse should
definitely not be regarded as the error in the "absolute position"  of the point
as that in no way follows the rules which they are based on.  One should be
extremely careful in understanding the limits of the interpretation of error
ellipses.
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Chapter 13.  Theory of least squares solution

While the theory of least squares adjustment as it applies to surveying can be
found in well documented form in several text books, several of the important
concepts are presented here in simple form.

13.1 Minimization

Least squares minimizes the sum of the squares of the weighted residuals.
A weighted residual is the residual divided by the error estimate.  That
quantity is what is squared, and each measurement (observation) needs to
included in the summation.

To obtain a minimum the sum of the squares of the weighted residuals are
subjected to partial differentiation with respect to the parameter which is the
residual, and that equation is set equal to zero.  Since it is desired to solve
for the unknown coordinates,  the observation equation is used to substitute for
the residual in terms of the unknowns.  An observation equation defines a
measurement plus its residual in terms of an equation which defines the
measurement in terms of coordinates. 

The observation equation for an elevation difference is simply the "to"
station's elevation minus the "from" station's elevation.  The observation 
equation for a horizontal distance is the pythagoreum theorem "inverse" of the
coordinates.  The observation equation for an azimuth is the tangent inverse of
the change in eastings divided by the change in northings.  The observation
equation for a horizontal angle is the difference between the foresight and
backsight directions, and is thus the similar to an azimuth applied twice where
the two values are differenced.  The observation equation for a control
coordinate is simply the input coordinate is equal to its adjusted value plus
the residual.

The second derivative can be taken and solved.  This results in a positive value
which assures we have computed a minimum (a negative value assures a maximum has
been calculated).

13.2 Linearization

Certain observation equations cannot be directly solved because they are non-
linear.  A non-linear equation is any equation with any exponentials besides one
(including square root) or any trigonometric functions which include unknown
coordinates.  The observation equations for differential leveling and control
coordinates are linear,  and the observation equations for distance (square root
and squared), azimuths (tangent inverse), and angles (tangent inverse) are non-
linear.

The 1D least squares adjustment is thus linear and is solved directly.
Solved directly means the elevations are directly solved for.
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The 2D least squares adjustment contains non-linear equations and thus requires
linearization.  Linearization is performed using a Taylor's series expansion
where all but the first order differentials are considered negligible.  This
approach requires input of approximate values for all unknowns (coordinates),
and the solution is actually for updates to the approximate coordinates.  The
update process is iterative (note the 1D least squares does not iterate) where
the updates to the unknowns eventually become insignificant.  In cases of large
blunders the solution may actually get worse as iterations proceed (divergence).
 EFBP uses 0.001 ft. or m. as the maximum update convergence criteria and quits
if divergence or 10 iterations occur.

Both minimization and linearization involve calculus (differentiation).  Note a
user of least squares does not have to understand  the derivation and is thus
not required to have knowledge of calculus.

13.3 Normal equations

Least squares forms and solves a "n x n" system of equations where n is the
number of unknowns.  The number of unknowns is the number of stations in a 1D
adjustment (one elevation per station) and in the 2D adjustment it is two times
the number of stations (two coordinates per station).  The equations which are
formed and solved are called the normal equations.

13.4 Cholesky solution (positive definite systems of equations)

System of equations can be solved by a variety of methods.  Least squares normal
equations in surveying always belong to a class of equations which are positive-
definite.  The understanding of the positive definite class  of equations is a
topic of linear algebra.  A user of least squares does  not need to know linear
algebra.

The positive-definite classification can be taken advantage of and solved using
the Cholesky (square root) solution.  This type of solution is less prone to
round-off and is significantly faster than more generic forms of solution.  EFBP
uses the Cholesky solution in the 1D and 2D least squares algorithms.

The normal equations in surveying are always symmetric (the term in row 2,
column 5 equals the term in row 5, column 2).  This allows EFBP to only have to
store approximately 50% of the terms which saves on computer storage and the
amount of necessary computations.

13.5 Variance-covariance matrix

If the normal equations are written as NX=C where N is a "n x n" system of
coefficients, X is an "n x 1" vector of unknowns, and C is the "n x 1" vector of
constants, let N-1 be another "n x n" system of coefficients which results from
NX=C being re-written as X=N-1C.

N-1 is called the inverse of N, and it can also be shown that it represents the
variance-covariances of the unknown coordinates.  N-1 is thus the coefficients
from which post-adjustment coordinate standard deviations and error ellipses can
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be derived.  To obtain this information only a very small fraction of terms in
N-1 (2 * n terms) need to be calculated.  The Cholesky solution can again be used
to efficiently calculate these variance-covariance terms.

If no redundancy existed, simple error propagation of coordinate equations and
variance-covariance would yield identical results.  The simply equation based
error propagation cannot efficiently handle using redundancy in a survey in
calculating the results of coordinate standard deviations and error ellipses.

A user does not have to understand the derivation of the variance-covariance
matrix.  A user simply needs to know how post-adjustment error analysis should
be utilized.

13.6 Sparsity of the normal equations

Solving a system of "n equations, n unknowns" where n is large is a very time
consuming problem even on a fast computer.  It is compounded by the fact that in
the 2D adjustment the system has to be solved multiple times as the solution
iterates to convergency.

The normal equations in survey adjustments tend to be sparse, i.e., many of the
coefficients are zero.  This is true because a non-zero term indicates two
stations are directly connected by a measurement.  While it is possible that
every station in a survey is directly connected to every other station by a
measurement (no zero terms), this is highly unlikely.
In survey networks a particular station is usually only directly connected by
measurements to a small subset of the total number of redundant stations.  The
number of zero terms is thus quite large as a percentage of the total number of
terms.

What you want to avoid is having the computer is operate on zero terms - adding
zero to a number, or multiplying zero times a number and adding it to another
number, are unnecessary operations.  It is also possible to not store zero terms
in a computer register.  The location of the zero terms in the normal equations
defines if an algorithm can eliminate storage of zero terms and eliminate most
of the addition of zero terms.

13.7 Taking advantage of sparsity - bandwidth optimization

EFBP uses a bandwidth optimization process in taking advantage of the sparsity
of the normal equations.  This process is actually a station reordering which
places the zero terms in a grouped area so that the algorithm knows not to store
or operate on those terms.  The bandwidth optimization process places stations
which are directly connected by a measurement(s) in close proximity in the
reordered list.

While the number of bandwidth optimization algorithms is immense, EFBP uses a
simple one which works very well for survey network type station connectivity. 
Note it applies to the survey after sideshots have been eliminated.  The
algorithm starts at a station with the most number of connected stations
(connected by a measurement).  Connected stations are added to the list.  Next
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stations not in the list are added which are connected to the second station in
the list, then the third station, etc.  Eventually every station is in the list.

The term maximum bandwidth refers to the reordered station list.  The furthest
"distance" in the list between two stations directly connected by a measurement
is the maximum bandwidth.  This is computed as the list is being built.

The bandwidth is displayed as it is one of the elements in estimating how long
the least squares will take to process.  Survey networks with small redundancy
will tend to have a smaller bandwidth as a percent of the number of stations in
the network.  As a survey becomes more interconnected (redundant) the bandwidth
becomes a larger percent of the total number of stations.

Bandwidth optimization is essential for efficient solution of least squares
problems.  Knowledge of how the bandwidth procedure works is not required for a
user of EFBP.


